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ABSTRACT

Historically multi-item inventory control has been mod-

eled by assuming that each item can be treated independently

in a variable cost minimization formulation. In this paper

independence between items is not assumed. Constraints on

total system operating characteristics create inter-item

dependencies. Optimal policies are determined from a goal-

constraint formulation. This is done without reliance upon

unknown parameters such as order cost and carrying cost which

the traditional theory leans on heavily. A group of models

are presented, with necessary and sufficient conditions for

optimal solutions provided for each. In addition, solution

algorithms are indicated for the major models. An algorithm

for verification of sufficiency conditions for a non-convex

objective function is also provided.
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CHAPTER I

INTRODUCTION

1 . 1 BACKGROUND

The great majority of research in the field of inventory

theory has been associated with the treatment of a single

item. The object of such research is to determine decision

rules which tell us how much to order and when to order to

minimize variable costs. In order to implement these deci-

sion rules one must know, or at least be able to estimate

the order cost, holding cost, and shortage cost. Another im-

plicit assumption is that investment capital is available to

buy and hold the optimal order quantity and safety level.

In the military the situation is somewhat different.

The cost parameters mentioned previously are difficult, if not

impossible, to estimate. Furthermore, they may not always be

meaningful. An example of this is the inventory carrying cost.

A major portion of the carrying cost is the opportunity cost

related to alternative uses of the investment in stock. With-

in the Navy, the budget funds allocated to stock cannot be

used for any other purpose. In addition to this problem, each

military inventory is under severe budget restrictions.

In order to understand these restrictions, some discussion

of the budget process is necessary. The manager of a Naval

Supply activity receives funds from two sources. The first

source of funds is referred to as Operations and Maintenance

funds. As the name suggests, these funds support the opera-

tions of the activity which include salaries, providing for



maintenance of buildings, purchase of minor equipments, arid re-

plenishment of material necessary to the operation of the ac-

tivity. These funds cannot be used for the acquisition of

items for general stock. The second budget source provides

funds for acquisition of items for general stock. This budget

can be in terms of either a limit on average investment or a

procurement limitation. Moreover, these resources cannot be

transferred to the Operations and Maintenance budget. Thus

one finds within the military existing constraints on funds

available to purchase stock or those available to initiate

and process orders and receipts.

These differences between the military situation and the

assumptions made in classical theory have suggested some of

the questions to be explored in this study.

These questions may be stated in a more precise form as

follows

:

1. Is the single item theory sufficient to provide

decision rules for the multi-item inventories in the

Navy?

2. Is the assumption that the order cost, holding

cost, and shortage cost are known parameters reason-

able or even necessary?

3. Does the addition of budget constraints to the

problem require a different basic model?

It is proposed that a more adequate approach is that of a multi-

item inventory model based upon an investment limit and an order

constraint.



Depending upon the situation, the military inventory man-

ager attempts either to minimize shortages or to minimize

weighted shortages. In the first case the tidewater or first

line stock point wants to minimize the number of times a cus-

tomer is turned away due to a lack of material at that activ-

ity. In the second instance, weighted shortages are minimized

because some projects are more essential from a military

standpoint than others. Thus, for the military, the cost of

being out of an essential part is greater than the cost of be-

ing out of an ordinary part.

The above arguments have motivated the construction of a

multi-item inventory model which attempts to satisfy one of

the above goals subject to a constraint on average investment

as well as a constraint on the number of orders per year.

In order to have other than a trivial solution, every

inventory model must have some built-in control to prevent

either an infinite order quantity or, on the other extreme,

an infinite number of orders. For instance, in the Economic

Order Quantity inventory model the order cost prevents order-

ing after each demand while the holding cost prevents an in-

finite amount of inventory on hand. The optimal solution

then achieves a trade-off between the order cost and the

holding cost.

Now we observe that a constraint on the average inventory

would achieve the same purpose as the holding cost and a con-

straint on number of orders would achieve the same purpose

as the order cost. Moreover, the budget constraint and the



order constraint are more realistic since they are relatively

easy to obtain and the inventory manager, who cannot be ex-

pected to understand the mathematical theory intimately, has

a better intuitive feeling for these constraints than he would

have for the order cost and holding cost parameters.

1.2 CURRENT NAVY PROGRAMS

Currently the Navy has two programs which provide deci-

sion rules for stock points and inventory control points.

The first program which governs the management of retail

material of Navy stock points is known as the Variable Opera-

ting and Safety Level (VOSL) program. The VOSL program is a

model of the following situation. The stock point receives

an Operations and Maintenance allotment which, among other

things, fixes the personnel ceiling at that activity. This

in some sense limits the maximum number of orders which can

be written. In addition, the stock point receives an invest-

ment limit which cannot be exceeded. The stock point manager

then strives to minimize some function of shortages while re-

maining within the above constraints. In the case of the

stock point we have essentially a single warehouse system.

The second program which governs the purchase of Navy

wholesale material is known as the Uniform Inventory Control

Point program. However, in the case of the inventory control

point, we have a multi-echelon, multi-warehouse system. On

the ICP level, the inventory manager is given both a procure-

ment and personnel budget. In this instance, the manager again

10



attempts to minimize shortages within the multi-echelon frame-

work. On the stock point level a similar situation exists

with the exception that the inventory manager attempts to min-

imize some function of shortages with respect to his single

warehouse system.

In each program the manager attempts to minimize some

function of shortages while subject to some constraint on in-

vestment and a constraint on orders. This observation leads

to the formulation of the models discussed in Chapter 2.

11



CHAPTER 2

PROBLEM FORMULATION

2.1 BASIC FORMULATION OF THE PROBLEM

As suggested by the introduction, some other formulation

of the inventory problem seems desirable. Such a formulation

would not be based on minimizing variable costs in the classic

sense, but rather on minimizing some more reasonable objec-

tive. For this study the objective will usually be some func-

tion of weighted units short.

In general, the basic problem can be stated as

min f(X,Y)

subject to:

g. (X,Y,A) _< j = 1,1,. . . ,m .

where X and Y represent vectors of decision variables and A

represents a vector of known parameters. Throughout this

paper we will indicate vectors by non-subscripted capital let-

ters. The objective function f(X,Y) can be expected units

short, weighted units short or some other function of short-

ages. The constraints can represent limitations on the ex-

pected number of orders and restrictions on average invest-

ment or a procurement budget.

2.2 CONTINUOUS REVIEW FORMULATION

If one is given an inventory of n items, an average in-

vestment limit, and a limit on the number of orders then the

following continuous review problem can be formulated.

12



2.2.1 Constraint Formulation

Hadley and Whitin [1] show that under continuous review

the average on hand quantity (m, ) for the ith item is

Q.
r. + -=- - y. = m. , (2.1)
i 2 K i i

where

r. = the reorder point for the ith item,

Q. = the order quantity for the ith item,

y ±
= j Q

x f
i
(x,x

i
)dx,

f. (x,t.) is the density of lead time demand for the ith item,

and r. and Q. (i = l,2,»««n) are the decision variables.
i i ' '

To convert (2.1) to average on hand investment per item

we multiply by the price of the ith item (c )

:

Q
i

c . ( r . + —7T - y . ) = c . m . . (2.2)11 2 *i 11

Summing over the entire inventory, the averaqe on hand invest-

ment would be

n 0, n

X c
i
(r

i
+ -T " y

i
}

=
.1,

c
i
m
i '

(2 ' 3)

i=l i=l

Hadley and Whitin [1] also show the average number of

orders (d. ) per unit time for the ith item in steady state is

Ji-dj . (2.4,
~i

where

/oo
x f . (x) dx and f . (x)

is the density of demand per unit time. Then the average num-

ber of orders per unit time for the entire inventory would be

13



n X. n

I <r
=

I d
i

* (2 * 5)

i=l y
i i=l

x

Therefore the constraints on average investment and on

the number of orders can be written as

n Q.

I c
i
(r

i
+ -| - ii.) < K

1
(2.6)

i=l

and

n A.

I ^ < K (2.7)
i=l g

i ~ z

2,2.2 The Objective Function

Several possible objectives can be proposed. At this

point, however, we will select as the objective function the

minimization of expected units short per unit time. The solu-

tion technique would be similar for any choice of objective

function.

From Hadley and Whitin [1] we see the expected shortages

per procurement cycle for the ith item can be expressed as

/~ (x-r
n
)f. (x ; ijdx . (2.8)

r li i

The expected shortages per unit time for the ith them become

A.

^ l

n
(x-r

i
)f

i
(x,i

i
)dx . (2.9)

y
i i

The objective can now be stated as the minimization of

the total number of shortages per unit time for the entire in-

ventory. The objective function becomes

n X.

z = y -± r
i=l Q

i i
( x- r

i
) f

i
( x ' T 1

)dx
•

14



The basic continuous review formulation can now be stated

as
n X.

min Z = ~ f°° (x-r ) f

,

(x,t )dx ,
. 'S 0. ; r . 1 i ' 1 '

1=1 ~i i

subject to
n Q
I c

i
(r

i
+
-T " y i

} ^ K
l '

i=l

n X.

1=1 ^1

Q. > 0, and r. unrestricted,
l — i

2.3 PERIODIC REVIEW FORMULATION

If we are again given an n item inventory and given a

time period T between reviews and a limitation on averaqe in-

vestment, the periodic review model can be formulated which

minimizes expected units short per unit time.

2,3.1 Constraint Formulation

From Hadley and Whitin [1] we see the average inventory

for the ith item can be expressed as

A .T

t ,
+ u . + -i— = b

l l 2 i

A .T

R. + \i. + -i- - b. , (2.10)

where

R, = the "order-up-to" level of the ith item,

/OO

A xh

,

(x,t . +T) dx where h (x,i.+T) is the demand
l ' l l ' l

distribution over a lead time plus a review period,

A. = mean demand per unit time for the ith item, and

T = the length of time between reviews.

15



If we assume T is fixed and the same for all items, the

R. (i=l,2 ,
• •

• ,n) are the only decision variables.

The average investment for the entire inventory then

becomes

n X .T n

X c
i
(R

i
- w

i
- "2-» Vl c

i
b
i •

<2 -n '

1=1 1=1

2.3.2 The Objective Function

From Hadley and Whitin [1] the average number of back

orders incurred per unit time is

f 00

Z
±

= ^
/ R

(x-R
i
)h

i
(x,T

i
+T)dx . (2.12)

i

Therefore, the periodic review problem given a fixed re-

view period may be stated as

n i

z T - f
.^, T j r. (x-r. )h. (x,x.+T)dx
i=l i i i i

subject to

n X.T

J c.CR. - „ - -±-) < K]
_

.

i=l

16



CHAPTER 3

SOLUTIONS

3.1 SOLUTION TECHNIQUE

The technique we will use to solve the problems formula-

ted in Chapter 2 is known at the Kuhn - Tucker Theorem. This

theorem is often used to solve constrained minimization prob-

lems where the constraints are inequalities and/or equalities

First, the Kuhn - Tucker theorem [2] will be stated as

it applies to these problems. Consider the problem:

minimize f(X,Y)

subject to:

gi
(X,Y) < 0, i=l,---,n ,

gi
(X,Y) = 0, i=n+l, •• ,m ,

y o > 0. and x unrestricted.2 l — i

Theorem 1 . If the constraint qualifications are satis-

fied for the minimization problem, then for (X ,Y ) to

be an optimal solution it is necessary that (X ,Y ) and

some II satisfy conditions (1) and (2) for

m
F(X f Y,H) = f (X,Y) -

I T\.q. (X,Y)
1=1

and

n . , i=l , • • *n,

n. unrestricted for i=n+l , • •
• ,m.

l

(1) a. F (X ,Y°,H°) =

b. F (X Y°,H°) > and Y°F (X°,Y°,1I ) =
y i

- y

17



(2) a. F (X°,Y°,fl°) <_ for i=l,«-«n and n- <

i

n
T

F (X°,Y°,1°) =on-
i

b. F (X ,Y ,11) = for i=n+l, # **m n . unrestricted,
i

1

Notice the theorem does not guarantee a solution. In-

stead, it says if we can find a solution satisfying condi-

tions (1) and (2) then (X ,Y ) satisfy the necessary condi-

tions for a minimum.

3.2 SOLUTION TO A SIMPLIFIED CONTINUOUS REVIEW MODEL

Before solving the general continuous review model stated

in section 2.2, we shall consider a less complicated model,

a form of which is used in Navy inventory management today.

This program was referred to in the introduction as the VOSL

program.

Suppose the order quantities are fixed by some other cri-

terion. Specifically we assume

1. Order quantities are determined from the economic

order cost equation

Q. =

r2AX.
l

; i
r

Ic. '

i

where A is the order cost and I is the holding cost,

which we assume are the same for all items.

n A,

2c
-K Q~ = K

2
'

i=l ^i

As stated in section 2.1, the general continuous review

problem is
n A

in Z = J
-i (°° (x-r,)f . (x,x,)dx (3.1)

i=l w
i

18



subject to

n Q.

I c
i
(r

i
+ -| - ]i

±
) < K

±
(3.2)

i=l

n A.

X Q
1
1 K

2 '
(3 ' 3 >

Immediately we see that assumption 1 fixes the value of

Q. and therefore will eliminate the second constraint in the

general problem. While we do not actually know the ratio of

A to I , this ratio is implied by the constraint on the number

of orders. Assumption (1) implies that

q, = k /-A
, (3.4)

l . K c

.

i

where

1 J2A
K I

A .

However, since the quantity -zr- is required in equation (3.3)

we write (3.4) as

Q
i

X.~ = K/c~T" . (3.5)
1

Substituting (3,5) in equation (3.3) yields

n

1
i=l

K =

k/c.;
i

v. =
i

K
2

K
2

n

I
i=l

•c.
1
A
1

or (3.6)

The determination of K then fixes the order quantities

from equation (3.4) and eliminates one set of decision

19



variables from the problem. If we substitute (3.4) into equa-

tion (3.2), we obtain

.1,
c
i
(r

i
+ 3l^" «i> i K

i •
< 3 - 71

1=1 l

We can reduce (3.7) to the form

I °i
r
i i k

i
- w .i, /T

i
5i +

.!.
c
i»i - k

i-
< 3 - 8 »

1=1 1=1 1=1

Our simplified problem can now be stated as

n
min Z = ) K/XTcT J (x-r

. ) f

.

(x,t . ) dx
. S i i J r . l i ' ii=l i

subject to:

n

J c.r. < Ki

i=l
x 1 " 1

3.2.1 Necessary Conditions

To solve the simplified problem we apply theorem 1 from

section 3.1. From condition (1) we have

-K/c. X. r f.(x,T.)dx-n,c. =0. (3.9)
i i J r . l ' i 1 i

i

From condition (2) we have

n

I c.r. - K" < (3.10)
.
L

, 11 1 —
i=l

and
n

ri, ( I c.r, - Ki) = . (3.11)
1 .

L
- 11 i

i=l

Observe that equation (3.9) can be solved for n-, yield-

ing
„/ Lc, „

n
l

= "
cT"

F
i

(r
i

) (3 * 12)

20



where

c
F . (r») is defined as / f. (x,i.)dx.

i

The right-hand side of equation (3.12) is always less

c cthan zero unless F (r.) = 0. The case where F (r ) = will
l l

occur if r exceeds the largest lead time demand. If we

assume this is not the case, (3.10) and (3.11) reduce to

n

I c.r. = K* . (3.13)
i=l

1 1 X

Thus the conditions for solution to the problem are:

n
l

=
"K
—c"1 F

i
(r

i
}

'
(3 ' 14)

and

n

J c.r. = K' . (3.15)
,
L , 11 1

i=l

It is possible to obtain a closed form solution which

satisfies equations (3.14) and (3.15). However, generally

we cannot solve these equations in closed form unless

J r
(x-r

i
)

f

i
(x,T

i
)dx

i

exists in closed form and is a relatively simple function of

r. .

l

Instead let us look for a general method of solving equa-

tions (3.14) and (3.15). If we consider equation (3.14),

which is
.A7

ri = -k/-±. P?(r.) ,
(3.14)

1 c 1 1
i

we notice the right hand side has an upper bound of since

F
C
(r ) >ii —

21



and a lower bound of

for each i since

This also implies

/AT
-K/-±

c.
1

F
C (r) < 111 —

'X. /A /A1/2 / n,
n
1

>_ Kmin(/ — ,/ — ,.-.,/ — ) .

i 2 n

/\7
Suppose 6 = Kmin (/— ) for all i. Then a suggested solu-

1

tion procedure would be to begin at ru = j-/ solve equation

(3.14) for the vector r and compute the value of the con-

straint using equation (3.16) , which is

n
y c.r. - H . (3.16)

.
L

, 111=1

If H > K' decrease ru by j. If H < K' , increase x\. by j.

Compute the value of the constraint using equation (3.16).

If the decrease (or increase) of ru has not caused the sense

of the inequality to switch, decrease (or increase) n, by the

same amount j. If the sense of the inequality has changed

then reduce the increment to -^ and decrease (or increase) r\, ,

solving for the vector r at each value of n-, and computing

the value of H from (3.16) until the sense of the inequality

switches again. Continue until H = K' or until H is within

some acceptable region of K' . This method will converge to

the optimal solution rapidly.

22



This approach is feasible on a high speed computer and

takes little time for a large inventory. The limitation of

this method is solving for r. from the equation

c
n
l AT

i*
r
i

; K
v

X.
m

1

However, approximations are available for some distributions

which cannot be solved in closed form.

3.2.2 Sufficient Conditions

From the Kuhn - Tucker paper [2], if we have a convex

objective function and a convex constraint region, the neces-

sary conditions are also sufficient. The condition for apply-

ing the Kuhn - Tucker theorem is that the constraint region

be convex. Since the constraint under consideration is lin-

ear in r, the region is convex. To show Z(r.) is convex let

us consider the equation of the expected units short per unit

time,

/OO
(x-r, )

f

(x,t. )dx .

r . iii
l

3
2
Z.

Now if J- > for all r., then Z. is convex. Taking oartial
8r.

2 -
i

derivatives , we find

3Z,
1 | t OO- = -K/T. c. / f ,(x,T )dx

8r. i i
i

and

2

i = K/X~E~ f (r, ,x ) . (3.17)

3r.
2 i £ i x x

i

23



Equation (3.17) will always be greater than or equal to

zero. Under these conditions Z, is convex. Thus it follows
1

that Z is convex since it is the sum of convex functions.

3.3 PERIODIC REVIEW, FIXED PERIOD SOLUTION

In this section we shall consider the following problem

as stated in section 2.3:

11
1 00

min Z =
I ^ /£ (x-R

i
)h

i
(x,T

i
+T)dx

i=l i

subject to:

n X.T
y c

i<
R
i

- p ±
- tH < k.

i=l

3.3.1 Necessary Conditions

Applying Theorem 1 we obtain the following equations

which will yield the necessary conditions for optimality:

-H
C
(R ) = nc.T (3.18)ill

and

n X.T

I c (R - y - -i-) = K (3.19)
i=1

1 i i 2 1

The solution of equations (3.18) and (3.19) can be found

using the method described in the previous section. If the

solution vector R satisfies the conditions outlined in sec-

tion 3,2.2, then equations (3.18) and (3.19) are both neces-

sary and sufficient.

3.4 GENERAL CONTINUOUS REVIEW

Let us now consider the continuous review problem stated

in section 2.2.2 which was:

n \

minimize Z = £ pp
/°° (x-r. ) f . (x,T . ) dx ,

i=l i i

24



subject to:

n Q.

I c
i
(r

i
+ -r - M 1 K

i '

i=1
i i ^ i l

n X.

i=l *i — 2 '

Q. > 0, and r unrestricted .
i — i

3.4.1 Necessary Conditions

As a result of condition (1) in section 3.1, we have the

following equations for all i

- 57 F
i<

r
i>

- *i
c
i = ° (3.20)

and

- —
9

/" (x-r. ) f. (x,t. )dx - —~ +
1

Q.
r
i

1X X
=

*i ~i
2 -> . (3.21)

Also, because of condition (1), we know Y F (X ,Y ,11) = 0.

If we modify equation (3.21) by multiplying through by Q, , we

obtain
X,

1 i~i 2 if
00

- 7^— J (x-r. ) f . (x,t ) dx - —«- --=-
Q. J r. ill 2 0.
l l ~i

As a result of condition (2) we have

n Q.

I c.(r. + -i- y.) " K
x

<

i=l

= . (3.22)

(3.23)

and
n Q.

I c.fr. + -|- y.)
i=l

= 0.

Equation (3.20) can be solved for ru which yields

A

"1 HX F
i
(l

i1~1

(3.24)

(3.25)

25



Since A. > 0, c. > and O, > 0, n. is always less than

zero unless r. exceeds the greatest possible lead time demand,

Assuming this is not the case, equations (3.23) and (3.24)

reduce to

n Q.

I C
i
(r

i
+ -"

^i> " K
l - °

i=l

In addition, from condition (2) we have

n A.

(3.26)

. , c.
i=l l

and
n A.

1=1 1

=

Then considering equation (3.22) and substituting for n , equa-

tion (3.25) , we have

A.

Q.

ViA.

- (°° (x-r.)f. (x,x.)dx + ~ F
c
(r.) + -^r-

J r . l l ' l 2 l l O.
i l l

= .

Solving for n-> yields

Q
l „c

n 2 ~2 F
±
(r

i
) + /r

(x-r
i
)f

i
(x,T

±
) dx

or
Q

n
2

- - (r
±

+ -j)F°(R
i

) + / r
xf„(x,T

i
)dx (3.27)

The right-hand side of equation (3.27) is not always neg-

ative. However, theorem 1 requires n . < 0. This suggests two
i —

possible cases for consideration.

Case I . n
2

< , r\
1

<

As a result of condition (2) , the necessary conditions in

this care are:
A.

- ^ F?(r
±

) - n
1
c
i

= , (3.20)
i
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- Q^ /r.
(x-r

i
)f.(x,T.)dx - ^-i-i + -li = , (3.22)

i i ~i

n Q,

I c
i
(r

i
+ -i- - u i

) - K
1

= , (3-26)

and

n A.

I O^
- K

2
= . (3.28)

i=l ~i

Case II . r)

2
= , r\, <

The necessary conditions in this case are

A.
- £ F^r^ - n

1
c
i

= , (3.20)
i

~ Q^r (^-r
i
)f

i
(x,T

i
)dx -

1
^

i = , (3.27)
i i

and

n Q,

J c
i
(r

i
+ -| - u.) = K . (3.25)

i=l

Since the equations above cannot be solved for r and

Q in general, some iterative process or search technique

seems desirable. One such technique was used in solving an

example problem stated in section 5.2.

Beginning with the solution to the simplified continuous

review problem, which would be a feasible one, compute the

value of n 2
f°r aH i« Find

and

h = min [ri
2
(i) 3

f = max[n
2
(i) ]
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It is now desirable to change the feasible solution ob-

tained previously so that h increases and f decreases until

h = f. When this occurs, we have satisfied the necessary con-

ditions for optimality. If n
2 (j) = h and ruOO = f/ we re-

duce Q. by 1 and increase Q, using equation (3.28) such that
3 K

(3.28) is still satisfied. Then we solve another simplified

continuous review problem using the new values of Q, and 0, .

We continue until h = f.

The algorithm described above is an elementary approach

to the problem. More sophisticated anproaches are available.

Among these is a search technique proposed by Fiacco and

McCormick [3] . This search technique does not require a convex

objective function or a convex constraint region. Of course,

any solution is strictly a local minimum in this case. The

Fiacco - McCormick search is limited by the requirement to

compute the inverse of a (2n + 2) x (2n + 2) matrix. This

limits the size of the inventory for which this technique is

useful.

3.4.2 Sufficient Conditions

If the objective function was convex we could apply the

principle used in the preceding models to determine suffi-

ciency conditions. However, Vemott [4] states that the ob-

jective function, equation (2.8), in general is not convex.

Vemott also discusses the conditions under which it is con-

vex. The following sufficiency conditions do not depend

upon convexity of the objective function.
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Consider the problem

mm f (X,Y)

subject to:

g i
(X,Y) < i=l, •••,m

The set of m equations g. (X,Y) _< can be written as a

vector equation

G(X,Y) .

Partition G(X,Y) such that

G(X°,Y°) = [G
(1)

(X / Y ),G (2)
(X / Y°)]

where

and

G
(1) (X°,Y°) =

G
(2) (X°,Y°) < ,

and either may be empty.

Partition G (1) (X°,Y°) as

„(1) ,„o „o o „o ** ,o , To
(X
W
,Y

W
) = [G (X

W
,Y

W
) ,G (X",Y

W
)]

**
rO , rO.where the n . associated with each element of G (X ,Y ) is

* o o v

zero and the rj associated with each element of G (X ,Y ) is

different from zero.

Define D as the 2n x m matrix

^l ^i
D =

dx. ' 3y.
i n

Partition D and U as

* **
D
w

[D ,D ] ,

*
11° =

If we define F (x,y,1f) as

F(x,y ,11) = f (x,y) - G (x,y)H
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and define [E ] as
r

[E°l =

3
2
P 3

2
F

3x.3x. ' 3x.3y,13 1 ^3

3
2
F 3

2
F

King [5] states and proves the following theorem re-

lating to sufficient conditions.

Theorem 2 . In order that f (X,Y) have a local minimum

at (X,Y), it is sufficient that (in addition to Theorem 1)

(X-X°,Y-Y°)
T
[E°] (X-X° / Y-Y°) >

r

for all X and Y satisfying

(X-X°,Y-Y°)D* = .

It appears that Theorem 2 provides sufficient conditions for

Case I and Case II. The only difference being, in Case I,

that

G*(X°,Y°) includes g^X^Y ) and g 2
(X°,Y°) .

In Case II, G (X°,Y°) only includes g 1
(X°,Y°)

While Theorem 2 is interesting from a theoretical stand-

point, it does not provide a direct computational verifica-

tion of sufficiency for any particular solution. However,

in Section 5.2 such a procedure is indicated.
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CHAPTER 4

EXTENSIONS OF THE GENERAL PROBLEM

4.1 A PROCUREMENT BUDGET CONSTRAINT, CONTINUOUS REVIEW

Suppose instead of a limit on the average investment/

we are given a limit on the amount of money we may obligate

for procurement in a period of time. This constraint can

be stated as
n

I c,n
n
Q. B (4.1)

i=l ! i i

where n. is the number of orders for the ith item per unit
l -

time.

If we consider a continuous review system with back-

orders allowed, the value of n. for the ith item is the non-
' l

negative integer which satisfies

r . < a - x . + n < r .
* + . (4.2)ill i~i — l ~i

where a. = the asset position of the ith item at the begin-

ning of the period, and

x. = the demand random variable per unit time.

Assuming the inventory position at the end of the period

0.
is r. + —j and relaxing the requirement that n be integer

valued, then equation (4.2) becomes

Q
a. - x , + n .0- = r + ~ . (4.3)
l l i~i l 2

Solving for n ,
1

Q
nO = r + —i- + x. - a.
i~i i 2 l i

and Q.
r
i

+ T + X
i

- a
i

n
i

=
Q.

(4.4)
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By substituting (4.4) into (4.1) we have

n Q.
T c. (r. + -4 + x. - a.) < B . (4.5).£,11 2 l l —

By taking the expected value of (4.5) , the random var-

iable x, becomes the parameter A. or expected annual demand.

This results in the following equation:

n 0. n n

I c (r + -4) + I c.A. -
I a .c. = B . (4.6)

i=l 1 1 4
i=l

x 1
i=l

1 1

This constraint can be rewritten as

n Q. n n

I c. (p. + -4) < B -
I c.X. + I a.c. = B' (4.7)

i=1
i i -J i=1

ii
i=1

i i

or

n Q.

I o
i
(r

i
+ -j) < B' . (4.8)

i=l

Notice the constraint (4.8) is of the same form as equa-

tion (2.6), the first constraint associated with the general

continuous review model. From this analysis we conclude a

constraint on obligation authority presents a problem similar

to the general continuous review problem.

An example of a system operating under a procurement

budget is the Navy UICP program discussed in the introduction,

If we desire to minimize shortages, the model is

n A.
r If 00

min Z = ) rr— J (x-r ) f , (x, i , ) dx
. S Q. j r . l l ' i
i=l i l
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subject to:

n A .

X ^- K
21=1 1

n 0.

J c (r. + -£) <B- .

1=1

4.2 A WEIGHTED SHORTAGES FORMULATION

The basic formulation of the problem may be extended to

several situations. If we let d represent the cost of a
i -

shortage of the ith item, the objective can be stated as

n A

X Q1=1 1

min Z = -— d / ( x- r ) f . ( x , x .
) dx .

^ ^ , Q . i^r, ill
The addition of the weighting factor d. does not increase

the difficulty of solving the general problem.

4.3 MINIMIZE TIME WEIGHTED SHORTAGES

Recently in the Naval Supply Systems Command, the num-

ber one objective of Naval logistics management was revised to

be the minimization of time weighted shortaqes . In other

words, they desire to minimize the amount of time a customer

must wait to receive his material. If we assume the distri-

bution of lead time demand for the ith item is normal (u.,o\)

and a continuous review system, the objective function can

be stated, Hadley and Whitin [1] , as

n
min I B(Q,r)

i=l

where B(Q,r) = |[$(r) - 3(r+0)]

an d 19 On n
B(r) = j[o

z
+(r-u) ]F (r) - j(r-p)f(r) .
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We have formulated the problem since this problem is one

of primary interest to the Navy today. However, no attempt

was made to provide a solution procedure or to determine

necessary and sufficient conditions for optimality.
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CHAPTER 5

SOME EXAMPLE PROBLEM SOLUTIONS

5.1 AN EXAMPLE OF THE SIMPLIFIED CONTINUOUS REVIEW MODEL

Let us consider an inventory of three items. The solu-

tion technique for n items would be similar. We assume the

distribution of lead time demand is normal with mean y. and
1

variance a. for the ith item. These items have the follow-
l

ing characteristics.

Parameter Item 1 Item 2 Item 3

A. 1000 1500 2000
l

C. 1 10 20
l

y 100 200 300H i

o 100 100 200
l

K. = $8,000 K
2

= 15 .

The problem is then

3

min Z= I K/c.A. (°° (x-r . ) f (x , t ) dx
.

*- . i i J r . ii i
i=l i

subject to:

3 0. 3

I c. (r. + -4) 80 00 + I c.y.
i=l

x x z i=l

In section 3.2, equation (3.6) determines the value of

the constant K which, in turn, fixes the order quantities.

Initially, then, the value of K is determined by
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K
2

K = = .04244 .
n
y /c. x.

i=l
1 1

Utilizing equation (3.4), Qv = ^ / — , the order quantities

can be determined as

i=l
T7

k K c

,

l

Q
1

= 746 ,

Q2
= 289 , and

Q
3

= 236 .

Since the Q. have been determined, the problem now can

be written as

3

min Z = T .04244/c~T" /" (x-r . ) f. (x,t . ) dx
.
L « i i J r i i ' ii=l i

subject to:

3 3 3 O . c

I c^r. < 8000 + I c
i

\i

±
- I

-i-i = 11,922 .

i=l i=l i=l

From equation (3.12) we see the solution to the above

problem is that vector r such that

c
nc

i
F
L
(r, )=- 1

, for all i . (3.12)
1 1

K/X~c~~
l l

For each value of n there will be some vector r for

which equation (3.12) is satisfied. However, since the ob-

jective function is convex, there exists only one vector r

such that equation (3.12) and the constraint (3.8) are satis-

fied simultaneously. As we decrease n from zero, we see that

at n =-.102,

Fj(r
x

) = .0760 ,
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F2(r
2

) = .1965 , and

F°(r.J = .2410 ,3
V "3

which implies,

:

x
= 243.30

,

r
2

= 285.40 , and

r
3

- 440.80 .

Checking the constraint, we find

3

I c.r. = 11923.30
,

i=l x x

which is within two dollars of the required average invest-

ment limit.

The order quantities and reorder points determined yield

an expected number of shortages per unit time for each item.

The expression for the expected number of shortages per item

per unit time is

x

Z = -i- /°° (x-r.)f (x,T.)dx . (5.1)
l Q v r. ill

^i l

When the distribution of lead time demand is normal,

(5.1) can be written, Hadley and Whitin [1], as

A .

1 Q.

r--y. r,-u =

(yr r
i
)$(-^-J:"

) + a
i

c|)("F-^ ) (5.2)

where
2 2

$(z) = —— /" exp(- ^75-) dx and <p (z) = exp(- -^y) .

/2? Z 2 /2¥
2

Using (5.2), the expected shortages per unit time for

each item is computed as
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Z
l

=
^74T [-( 143 - 3 °) (-0760) + 100(.1428)] = 4.52 ,

Z 2
= ^TW ["(85.40) (.1965) + 100(.2770)] = 56.7 , and

Z 3
=

^I3T [-( 140 - 8 ) (-2410) = 200(.3114)] = 240.0 .

The total expected shortages per unit time for the in-

ventory under consideration is

3

Z = I Z. = 4.52 + 56.70 + 240.00 = 301.22 .

1=1

5.2 GENERAL CONTINUOUS REVIEW EXAMPLE

Once again let us consider the inventory of 3 items from

5.1. We shall again assume the distribution of lead time de-

2mand is normal (u

.

,0 . ) for the ith item. The items under
i i

consideration have the following characteristics.

Parameter Item 1 Item 2 Item 3

L 1000 1500 2000
l

c. 1 10 20
l

li. 100 200 300

a. 100 100 200
l

K
±

= $8,000 K
2

= 15 .

Reviewing section (3,4) we note that the solution (r ,0 )

must satisfy

- 57 F
r«

r
i» = n i°x - (3 - i8)

A . n , c . n 9
A ..

- ~
!l

(x-r
i
)f

i
(x f Ti

)dx - -iji + -~^ = , (3.20)
^i i i



3 Q.

J
c.fr. + -J- y.) = Klf (3.23)

and

3 A.

I qT" K
2 '

< 3 ' 24 >

1=1 ^i

Equation (3.18) is now rewritten as

A,

n
x

= - —ip F?(r.) , for all i . (5.3)
i i

Substituting (5.3) for n, in (3.20), we get

H 2 - - 7 P. (r. ) + ! (x-r. )f. (x,T.)dx . (5.4)
* ^ l i r. li i

l

In other words, the necessary conditions for solution

are present when

for all i and j , and

n
2

=
j r

xf
i
(x,i

i
)dx - (j + r

i
)F

i
(r

i
)

= !Z xf.(x,T.)dx - (| + r.)r?(r.) ,
*- ^. j J *• JJJ

for all i and j. In addition, both constraint equations

(3,26) and (3.28) must be satisfied.

Using the search routine described in section (3.4.1),

this example was solved with the following results.

Variable 12 3

r 269.65 307.11 409.79

Q 483.08 229.12 313.31

n, -.0930 -.0930 -.0930

n
2

-9.013 -9,012 -9.012
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The value of the objective function (Z) was 285.20. Since

ru < and ru < 0/ Case I applied and Case II was not appli-

cable. If ru had been non-negative, we would have used the

conditions of Case II for solution.

Next we must determine whether the solution obtained

above satisfies the sufficiency conditions stated in theorem

2 in section 3.4.2 for a relative min. That is we must

determine if

for

h
T
E h > ,

F

hD = .

E„, h and D are defined as in section 3.4.2.
F

The theorem stated below is indicated by Hadley [6] and

proved in Hancock [7].

Consider the matrix A

A =

*T
E_ - XI D
F

*
D

Theorem 3. If the roots of
]
JAJ |

are all positive then

f(X,Y) takes on a strong relative minimum at (X ,Y ).

The procedure for applying theorem 3 is simple enough.

Construct the matrix A. Take the determinant of A and set

it equal to zero. The result will be an (2n x 2) degree

polynomial in A. Using Decartes rule of signs, the number

of positive roots of ||A|
j
can be determined. For example,

suppose
|
|a|

|

= A + 2A + 1 = 0. Here we have no sign

changes. According to Decartes rule of signs there are no
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„ . , 2positive roots. However in the equation X - 2X + 1 =

there are 2 sign changes which indicates 2 positive roots.

To show sufficiency of the solution states previously

we form the matrix A evaluated at (Q°,r ) which is

.196-X .000193 10
1.475-X .00405 10

2.19-X .006 20

.000193 -.000126 .5 .00428

.00405 -.000696 5 .0286

.006 .0018 10 .0205

1 10 20 .5 5 10

.00428 .0286 .0205

Taking the determinant of A and setting it equal to zero

we find all of the roots are positive indicating the solution

(Q ,r ) is a strong relative minimum.

5.3 SIMPLIFIED CONTINUOUS REVIEW WITH A PROCUREMENT BUDGET

CONSTRAINT

In this section we shall consider a three item inven-

tory and again assume the distribution of lead time demand

for the ith item is normal (y. r a.). The items under consid-

eration have the following characteristics

Parameter 12 3

X. 1000 1500 2000
l

c. 1 10 20
l

U, 100 200 300

o. 100 100 200

a. 100 200 300
l

2
B = $64,000 K 15
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The general problem is

3 A.

1=1 1 1

subject to:

n Z = ) rr— j (x-r,)f. (x,T.)dx
.. £, Q. j r^ 1 1 ' 1

3 Q.
T c . ( r , + —« + X . -a) <B

1=1

3 X,

.1 o7± K
2 •

1=1 ~i

Since X., a., and c. are known constants, the first con-11 1

straint can be rewritten as

3 Q 3 3

I c
i
(r

i
+ -j) < 64,000 -

I X.c. + I a.c^, or
i=l i=l i=l

3 Q.
c,(r. + ~) 64,000 - 56,000 + 8100 = 16,100.

1-1
(5.5)

If we also assume

0.
-i/5

~i K c.
1

as was done in section 3.2 and section 5.1, equation (5.5)

reduces to

n n Q.

c.r. 16,100 -
I c, 4 ' (5 - 6)

i=l
1 1

i=l
x

or

n
c11 —I cr 11922 .

i=l

The problem can now be stated as

3 A.

mm Z = ) -— / (x-r. ) f (x,t . ) dxL
^ O, J r 1 1 ' 1

l-l ~i 1
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subject to:

n
[ c.r. < 11,922 .

oil
X X "

Observe, however, that this problem was solved in section

5.1.
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CHAPTER 6

SUMMARY AND CONCLUSIONS

It is apparent that the models proposed do not represent

the ultimate answer in multi-item inventory theory. The sim-

plified continuous review problem stated in section 3.2 rep-

resents a model of the Navy's VOSL program. From the example

problems we see the general problem provides a solution which

is better than the solution of the simplified continuous re-

view problem. The major advantage of the simplified contin-

uous review model is its computational ease.

While the solution to the general problem as stated is

theoretically correct, an efficient algorithm for rapid loca-

tion of stationary points and subsequent verification of

sufficiency conditions is at present not available. There

is certainly room for future research on this topic.

The assumption that the expected number of orders which

can be processed is a well known constant is perhaps optimis-

tic. However, if we look at the general problem as a two

criterion problem, we can generate the following efficiency

curve. One method of generating this curve would be to

i

!

I /

/
/ "

/ I

I

i 2
->

Figure I K~
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solve the general problem for several values of the parameter

K
2

(the expected number of orders) . If these values of In-

versus the expected shortages per unit time are plotted, the

curve represented by Figure I is generated.

It is apparent that for every organization of N people,

there is some maximum number of orders which can be processed

per unit time. This point is represented by K- . However,

we contend that each individual manager must examine the

alternatives represented by the efficiency curve in Figure

I and select that point at which he desires to operate.

Another approach to the problem would be to formulate

a vector minimization problem. For example,

min [Z ,K~] ,

subject to:

3 Q-

X c
i
(r

x
+ "J" ^ < K

l
*

i=l

Hadley [6] indicates a procedure for solving problems of

this type. Such an approach to the problem proposed repre-

sents a fertile area for future work.

From the example problems given, it appears the Navy's

method of fixing Q and solving for r. (as we did in the sim-

plified formulation of section 3.2) does not result in an

optimal solution to the problem of minimizing shortages per

unit time. The use of the unknown parameters, holding cost,

shortage cost, and order cost presents a possible source of

error.
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We contend the constraints on average investment and

the expected number of orders actually imply the values of

the unknown parameters. Since the values of the constraints

are more easily determined than the order cost and holding

cost, the models proposed seem much more appropriate than

the traditional variable cost minimization models.

While an efficient algorithm for solution of the gen-

eral problem has not been presented, the advent of high

speed computers has opened the field of iterative solution

procedures. It should be only a matter of time until a pro-

cedure is available which can be reasonably applied to a

large inventory. However, the techniques discussed in sec-

tion 3.4.1 are feasible only for small inventories or sub-

sets of the larger inventory. For instance the problem

could be solved for the entire inventory using the simpli-

fied continuous review model. As stated previously, the

simplified continuous review algorithm is computationally

feasible for large inventories. The inventory manager could

then select subsets of items whose decision variables in-

tuitively appear to be unreasonable. We can then formulate

and solve the general model for the subset of items using

the budget allocated, to those items by the simplified con-

tinuous review model as K,. . The number of orders allocated

to the subset of items would become the constant K„. Selec-

tion of a subset of the n item inventory is necessary since

the general solution algorithms mentioned are feasible only
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if the number of items is small. We can guarantee that the

value of the objective function will at worst be the same

as the simplified continuous review model and in all likeli-

hood, it will decrease.

While the multi-item problem has been solved when funds

are unlimited, the assumption must be made that there are

no interactions among items (i.e., the problem degenerates

into N single item problems). Tor instance, it must be

assumed that enough materials handling equipment is avail-

able to handle all material, enough warehouse space is avail-

able and numerous other possible interactions do not exist.

Each of these interactions, including a limitation on funds,

represents a constraint on some resource within the system.

It seems logical, then, that the next step in the formula-

tion of multi-item inventory problems should be of the form

presented in this study.
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